

Gateway Portal

by Marlon Pierce and Stephen Wilkerson

ARL-TR-3154 March 2004

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-3154 March 2004

Gateway Portal

Marlon Pierce and Stephen Wilkerson
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2004
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2001–July 2002
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Gateway Portal

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

JONO3UH7CC
5e. TASK NUMBER

6. AUTHOR(S)

Marlon Pierce and Stephen Wilkerson

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3154

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
One problem facing researchers needing high-speed computations for their research is easy access to High Performance Computing (HPC) resources.
At one time, a majority of the users in the research community had two machines: one Unix workstation for research and another personal computer
(PC) type machine for word processing, e-mail, and creating publications and presentations. As the speed and popularity of PCs have grown, their roll
has also changed to include pre- and post-processing of complex jobs as well as their other functions. Moreover, these machines have started
replacing the more expensive Unix-based workstations for graphics and other multimedia functions. While PC machines can be made to emulate a
Unix X-Windows environment, this requires users to understand both operating systems and have X-software loaded on the PC client. In some cases,
unfortunately, users are becoming more PC literate and less Unix knowledgeable. Not knowing the correct commands has led to difficulties in
transferring files, writing job scripts, and the like, for HPC access.
One solution is to make the access to HPC assets available through a web interface. A web server can establish a connection between the user’s PC
and HPC assets, allowing file transfers and job submission. This interface eliminates the need for the user to understand how to write GRD scripts and
the problems associated with setting up HPC computer runs, while allowing the scientist to concentrate on the application of the computation for his or
her research. However, there are security concerns associated with Web access to HPC. This report addresses the implementation of a Web solution
using Java, Java Beans, and Java Server Pages (JSP) on an Apache web server running Tomcat. Examples from the Gateway interface are used as
evidence of this technology as a solution to a growing problem.
15. SUBJECT TERMS

HPC, Gateway, Tomcat, Java, JSP

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Stephen A. Wilkerson

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

22

19b. TELEPHONE NUMBER (Include area code)
410-278-3966

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Approach 2

3. Functionality 4

4. The Gateway Portal 5

5. Security Model 7

6. Gateway GUI Interface 10

7. Conclusions 13

8. References 15

Distribution List 16

 iv

List of Figures

Figure 1. Gateway server approach schematic. ..2
Figure 2. Gateway architecture. ..6
Figure 3. Login screen. ...11
Figure 4. Main screen. ..11
Figure 5. Submitting jobs..12
Figure 6. Submitting an ANSYS job. ...13
Figure 7. GRD script for ANSYS job...13

List of Tables

Table 1. HPC MSRCs. ..4

 1

1. Introduction

Access to the U.S. Army Research Laboratory Major Shared Resource Center’s (ARL-MSRC’s)
computer facility from a desktop machine can be accomplished using a number of methods. For
example, from a Unix* or Linux† workstation with the Kerberos‡ client installed, a High
Performance Computing (HPC) ticket can be requested from the command prompt. Once your
credentials have been established, an Xterm§ client can be made from your local display to the
HPC host. On the other hand, the procedure from a Microsoft Windows PC platform is a little
different. The user must load a stand-alone Kerberos client on the machine. Once done, the user
can request tickets from an HPC asset using a small client window. After a ticket has been
granted, the local host provides a Kerberos File Transfer Protocol (FTP) and Telnet graphical
user interface (GUI). If an Xterm client is installed on the Microsoft Windows machine, then the
machine operates much the same way as the Unix/Linux platform does through Xterm. Without
an Xterm client, the user is limited to DOS-style FTP and Telnet** to interact with the HPC
resources. Both systems have one drawback, the need to know a certain amount of Unix-based
commands or antiquated DOS commands. Additionally, as systems come and go and procedures
for submitting program-specific jobs change, users are forced to learn and relearn command
procedures to use HPC for their computation needs. A solution to this constant flux is to write a
platform-independent GUI to allow users to interface with HPC through an intuitive “point-and-
click” environment. This eliminates the Scientist and Engineers’ (S & Es’) time-consuming task
of learning new Global Resource Direction (GRD)†† procedures or changes on the system and
puts the onus on HPC personnel to keep the interface to HPC current for users. It also puts the
burden of providing support and keeping the GUI up to date where it belongs, on HPC personnel.

An obvious GUI environment would be a Web page. Web pages by definition provide platform
independence. The Web offers a platform-independent GUI by definition: the user interface
runs in a standard browser (Internet Explorer or Netscape Navigator) using standard Internet
technologies with no additional client software required. Furthermore, using a portable

* Unix is an operating system developed by Bell Laboratories in the early 1960s and is still regarded as an industry standard

around the world.
† Linux is a Unix-type operating system originally developed by Linus Torvalds with assistance from others. The source code

is freely available to all.
‡ Kerberos is a network authentication protocol. It is designed to provide strong authentication for client server applications

by using secret key cryptography. The protocol can be downloaded at the Massachusetts Institute of Technology or at
<http://web.mit.edu>.

§ The “xterm” program is a terminal emulation for the X-Window System and provides compatible terminal emulation similar
to a DEC VT 100.

** Telnet is a terminal emulation program for TCP/IP networks such as the Internet. TCP is responsible for verifying the
correct delivery of data from client to server. IP is responsible for moving packets of data from node to node.

†† GRD is a program to help users submit jobs to the High Performance Computing Computers at ARL and elsewhere.

 2

development language like Java would enable the GUI to be moved from server platform to
platform as new systems are brought on line and older systems retired without redeveloping the
HPC GUI. Because this is one obvious solution, other organizations have been developing or are
developing approaches along similar lines. For example, the University of Minnesota has
developed a Web interface to help users access their mainframe computer systems. The
University of Minnesota’s Web interface was named Teraweb. Teraweb offers a Web interface
to the University’s mainframe computers but is not written in Java and does not currently support
GRD or a Kerberos interface in an open-source programming environment. Implementing
Teraweb was possible, but with modification and additional costs and fees. Teraweb is not open
source and is proprietary. Rather than be locked into someone else’s program environment, it
was desirable to create a vanilla open-source security package that could be used throughout the
MSRC computer infrastructure for site-specific applications. Therefore, it was decided that
Teraweb was not the solution for ARL-MSRC.

2. Approach

There are two basic approaches to the security feature of the Gateway server that can be taken.
A brief description of the two methods is given here and the advantages and disadvantages are
discussed as well (figure 1).

Figure 1. Gateway server approach schematic.

The first approach is purely a Web page connection. In this approach, the user connects to a
server using a Secure Socket Layer (SLL) connection. Then, using the SLL connection, the user
authenticates, using Kerberos encryption, and gets Kerberos tickets to use in connections with
HPC. The Web page provides a number of point-and-click GUIs layered on top of this basic
authentication feature. Any number of applications or additional GUIs can be layered on top of
this basic secure connection to provide HPC users easy access to HPC assets. The advantage of
this approach is in its simplicity. Anyone can write GUI modules to be used with the basic
security package. The other advantage is that it’s a Web page. Hence, it will work on a Unix

 3

platform or with a PC environment.* However, the approach has its drawbacks. The hyper text
markup language (HTML) interface provides only a relatively few simple widgets (buttons, text
areas, text fields, checkboxes, etc.) to build GUI interfaces. Advanced functionality (such as
interactive remote visualization) requires more sophisticated clients. Other problems include
aggravating missing functionality in current browsers. For example, the hyper text transfer
protocol (HTTP) allows for multiple file uploads and downloads, but neither Microsoft Internet
Explorer nor Netscape Navigator support this. Multiple file transfers are a desirable feature for
HPC users who often need to perform recursive directory transfers. This restriction can be
overcome by using signed Java Applets, but will not work on machines where users don’t have
local privileges.

The second approach uses the Kerberos tickets on the local machine and creates a connection
between a PC machine and a server, which then connects to HPC. However, this methodology
requires that software be loaded on the local user’s machine.† The advantages to both of these
approaches is the platform independence. Platform independence is based on the use of Java as
the primary language and the Apache Web server. Java offers a huge suite of functions and ease
of portability. The drawback to this approach is that once again this requires that users are
allowed to load software on their machines or the user will be required to have an administrator
set up and maintain his computer with current copies of the software, which is not a bad option.

Rather than picking and proceeding with one approach over another, both approaches described
here were adapted and used as required to develop specific GUI applications for users. The first
approach was developed initially because it required no additional effort on the part of the user.
GUIs were created to allow users a basic point-and-click file transfer system from the PC to
HPC. Additionally, modules have been written to allow users to submit jobs in ANSYS,‡
ZNS-Flow,§ and Fluent** to HPC for simulation. This user interface writes a basic GRD script
for the job submittal and allows users the option to modify the script or accept it as is. The script
generation service that we provide is actually general in nature and can be extended to support
other queuing systems such as LSF†† and PBS.‡‡ This is not important for the ARL MSRC but is
an important issue for deployment at additional MSRCs and for supporting users that have

* A personal computer environment might include Microsoft Windows 95, 98, ME, NT, 2000, or XP, as well as Linux and
Apple Computers Macintosh operating systems.

† The current approach is to use Java routines to build functionality. Java offers a platform-independent, free programming
language with a lot of functionality already built in. Java JDK1.4 is currently being used for the development of users’ HPC
GUIs.

‡ The ANSYS suite of programs provides state-of-the-art prediction capabilities for structural, thermal, mechanical,
computational fluid dynamics (CFD), and electromagnetic analysis of structures and systems. ANSYS software provides
accurate modeling of physical phenomenon using accepted mathematical techniques.

§ ZNS-Flow is based on Chimera technology and allows the computational predictions of fluid and air flow problems. This is
considered a CFD code.

** Fluent is a commercial software package for solving fluid flow problems in computational fluid dynamics on CFD.
†† LSF load-sharing facility is a suite of workload management products from Platform Computing Corporation.
‡‡ PBS Portable Batch System is a flexible batch queuing and workload management system by Veridian Systems for the

National Aeronautics and Space Administration. It works on networked UNIX platforms.

 4

accounts both at ARL and other MSRCs. Additionally, the process is stored in a session that can
later be modified and resubmitted for further analysis. The GUI also provides a basic procedure
to check on running jobs, jobs in the queue, and to delete these jobs if necessary.

The next step in this process is for the developers of the interface to work with HPC users and
build in functionality to the specific application to help ease the use of HPC assets for U.S.
Army-related research. Because the program is open source and was written using Java and Java
Server Pages (JSP) this process can continue with any developer at any of the MSRC sites and be
adapted to the specific needs of a specific organization. One final note is that the servers running
the software developed for this GUI require administrative maintenance. This benefits the user
in putting the onus of HPC access on the administrator rather than the user. The administrator
needs to maintain the system, the GUI, and update procedures as new machines and software
continually roll out, while older systems and software are retired.

3. Functionality

The target market of Gateway* is the S & Es at any of the HPC facilities. Table 1 lists the
location of these facilities.

Table 1. HPC MSRCs.

ARL ASC
U.S. Army Research Laboratory
ARL MSRC
ATTN: AMSRC-CI-HA
Aberdeen Proving Ground, MD 21005-5006

Aeronautical Systems Center
ASC/HP Building 676, Area B
2435 Fifth Street
WPAFB, OH 45433-7802

ERDC NAVO
U.S. Army Engineer Research and Development Center
CEWES-IH
3909 Hall Ferry Road
TL112, Room 207
Vicksburg, MS 39180

Naval Oceanographic Office/MSRC Program
1002 Balch Boulevard
Stennis Space Center, MS 39522-5001

The functionality of the web portal includes the following:

• Secure login and access to HPC assets. Users will use their user name, password, and
secure IDs over a Kerberos connection to a server using one of the two methods described
in section 2.

• A master page will be maintained that connects to additional services and functions at
various sites within the MSRC.

* “The Gateway Computational Web Portal” is a journal article describing the system, and “Gateway Security Infrastructure”

provides additional material on security, including alternative strategies for secure Web access. It also provides a more in-depth
discussion of WebFlow.

 5

• A server running Apache* and Tomcat† will be used with JSP and Java programs to
serve up HTML pages to clients logging on. Connections will be made through a proxy
server on the World Wide Web to the Gateway server located behind an MSRC
firewall.

• Batch script generation with a GUI interface will enable users access to HPC computers
and run simulations on a variety of software packages. Currently, Gateway supports
ANSYS, ZNS Flow, and Fluent.

• File transfer services are provided on several levels as described in the approach using
HTML protocols and Java-signed Applets.

• Job monitoring will be allowed through the Web portal. Additionally, a job can be
deleted while in the queue and stopped through this interface.

• The portal’s Web interface can easily be extended to link to existing ARL Internet
resources, such as code documentation and the ARL machine load status pages.

Future efforts will enable the following:

• Additional GUI interfaces for applications requiring HPC resources. Examples include
CTH,‡ DYNA,§ Paradyn,** and other resource-intensive software applications.

• A Kerberized VNC†† connection to an HPC graphics workstation.

• Access between MSRC sites.

• File transfers between HPC mainframe computer workstations and user PCs. (Connect
one location transfer anywhere.)

4. The Gateway Portal

Gateway architecture will initially consist of a three-tiered approach to security. This will
eventually be replaced by a four-tiered system. Both will be discussed here. The first layer

* Apache is an open-source software product that serves as a web server platform on numerous operating systems.
† Tomcat is the servlet container that is used for the implementation of Java Servlet (1, 2), and JSP. Simply put, Tomcat

is the server-side software that interpolates JSP (3, 4), and generates HTML code for the World Wide Web.
‡ CTH 3-D Eulerian Shock Code was developed by Sandia National Laboratories and can model multi-phase, elastic-

viscoplastic, porous, and explosive materials.
§ DYNA is a general purpose explicit nonlinear finite element code developed by Halquist et al. for the Department of

Energy.
** Paradyn is an implementation of the DYNA 3-D code optimized for parallel processing.
†† Virtual network computing provides a remote display system that allows one to view a computing desktop

environment anywhere on the Internet and for a wide variety of machines. VNC was developed by AT&T.

 6

of the three-tiered system consists of dynamically generated Web pages. These are
implemented using JSP that allow Java code to be embedded into an HTML page (figure 2).
Therefore, the code that is executed on the client’s machine is HTML based.

Figure 2. Gateway architecture.

In figure 2, the user interacts with the Apache server through an SLL-encrypted connection.
Services are either implemented within JavaBean components in the Web server’s servlet
engine or by WebFlow modules. Communication between child servers and their parent uses
the secure SECIOP protocol. Communications with backend resources use Kerberized rsh
and rcp.

The middle tier represents the control layer and consists of two subtiers. The first subtier
consists of an Apache Web Server and a servlet engine (Tomcat, also from Apache). The
Tomcat server compiles and executes Java code contained in the JSP pages. Most of the
functionality (such as security and session management) is encapsulated into JavaBean
components rather than in the JSP pages themselves. These components are simply added to
the pages. All of the JavaBean components run in the same servlet engine (a Java Virtual
Machine) on the same host machine as the Apache web server. These components can
provide services themselves, or they can act as proxies to WebFlow components (described
next).

 7

The second part of the middle tier consists of the distributed application layer, implemented
using WebFlow, originally developed by Dr. Geoffrey Fox’s group at Syracuse University
and partially funded by the High Performance Computing Modernization Program (HPCMP)
through programming environment and training (PET). WebFlow uses CORBA* to allow
components to be distributed over multiple hosts. That is, components can be contained in
other servers running on different machines besides the Apache host server. WebFlow
components (or modules) implement services such as job submission and file transfer and can
be extended to provide other services. WebFlow servers are hierarchical, so a single master
server acts as the parent and gatekeeper server for the distributed children. Clients (in this
case, a JSP page) do not contact child servers directly, but instead contact the parent server
and request child servers by name. The parent then forwards requests to the appropriate
child.

The final layer in the system is the HPC layer. This is a Unix layer that will be accessed
through the middle tier. Commands in Unix will be scripted and issued from the middle tier
using the user’s credentials. The HPC layer has functionality like GRD already built into the
system. Therefore, this functionality will be leveraged by the Gateway GUI. This allows the
client to pay attention to the task at hand (getting CPU cycles for his simulation) rather than
worrying about GRD updates or changes to the bottom layer configuration.† As new systems
come on line, modulus at the center tier will be upgraded to improve Gateway functionality.

The four-tiered system will work the same way as the three-tiered system except the Web
server and servlet engine will be behind a firewall. These will be accessed through a proxy
server outside the firewall. This added layer of security prevents potential would-be intruders
from knowing the Internet protocol address of the machine where Gateway is installed.

5. Security Model

As seen in figure 2, Gateway requires several layers of security:

(1) The browser must make a secure connection to the Web server.

(2) The JSP pages must make a secure connection to the WebFlow parent server.

(3) The WebFlow parent and child servers must have a secure connection.

(4) WebFlow connections to the back end (such as HPCs) must be secure.

* Common Object Request Broker Architecture (CORBA) is an open distributed object infrastructure being standardized
by the Object Management Group (OMG) (5).

† The HPC facility is constantly undergoing upgrades and improvements to their systems. For example, older Silicon
Graphics Incorporated (SGI) equipment is being replaced by newer IBM CPUs this year. These changes can effect the way
users submit and run jobs on the machine. By creating this portal, the client’s environment becomes stable and the burden of
staying up to date is placed on HPC personnel.

 8

We address the following security issues: authentication, authorization, privacy, and data
integrity. We built the first two on top of the existing Kerberos security infrastructure at the
MSRCs, and the last two are subsumed by encryption mechanisms (6).

A portal administrator starts the Apache, Tomcat, and WebFlow master servers. Presumably,
this will be done in a special “Gateway” account, and we will assume that these servers run
under that account. These accounts are checked and maintained as a system administration
function within HPC. The server machine may or may not include network file system
(NFS)-mounted directories and is assumed to be able to reach HPC machines and mass
storage via Kerberized rsh and rcp. It will be assumed that the administrator has a
forwardable Kerberos ticket. For production portal use, this ticket should be renewable via a
cron job. The Apache server is set up to support SLL-encrypted logins using 128-bit
encryption. This server was built using OpenSSL and ModSSL.

Users log in to the portal via a login page that prompts them for their principal name (such as
swilker or pierceme@asc.hpc.mil), password, and passcode. When the user submits this form
(via HTTP POST) the server runs a kinit on the remote system and creates a ticket for the
user. The ticket is stored in /tmp and will be named krb5cc_<principal_name+timestamp>
(the time stamp guarantees the ticket name is unique). A simple Expect script is used to run
the kinit on the server.

One of the features of servlet engines, such as Tomcat, is that they maintain session states for
users automatically. When a user accesses a particular Tomcat server (indirectly, through
Apache), a session cookie is generated for him. Tomcat uses this cookie to maintain session
state for the user; so for example, JSP pages requiring extensive initialization will only need
to be initialized once per session, and user interactions can be stored in memory. Session
lifetime is configurable, but typically lasts about 2 hr. We will take advantage of this built-in
feature of Tomcat to support user authentication and identification, as we now describe.

We have developed a special authentication component to manage user session tickets. Our
mechanisms are based on the ideas of Kelly Kirk (ARL PET Enabling Technologies On-Site
Lead) that have been previously reviewed by the HPCMP (6). The authentication component
is included in all Gateway JSP pages. When the user logs in and successfully gets a ticket, a
unique HTTP cookie is created for him. This cookie is a message digest (using an MD5
algorithm) of the contents of his ticket file. Any subsequent access to Gateway Web pages is
verified by comparing this encrypted cookie to the value stored in memory on the server.
Additionally, the IP address of the user’s Web browser is stored in memory. Subsequent
page requests are verified to come from the same IP address as the initial request used at
login.

Users may also manage their sessions through the browser by deleting their session
credentials. This will remove the session ID and IP addresses stored on the server, delete the

 9

user’s Kerberos credential from the file system, and set the ticket-based session cookie’s
lifespan to zero (causing immediate expiration). The session credentials will also be deleted
automatically if the session expires (say, in 2 hr) and the user will need to log in again to
access the Gateway Web pages. Session credentials for all users will be deleted if the
Tomcat server is shut down.

In summary, the Gateway pages can only be accessed if the user has performed a successful
kinit. Thereafter, the user is identified by a unique Tomcat session cookie, a unique session
cookie generated from his ticket granting ticket (TGT), and the IP address he used to initiate
the session. All Web access is encrypted. We can also require the browser to send a properly
signed client certificate as an additional means of identification.

For this application, JSP pages make use of services provided by WebFlow servers. The
WebFlow servers use CORBA Object Request Brokers (ORBs) for remote client-server
connections. The CORBA security service is a general set of interfaces for making these
client-server connections secure, and these services can be built using different security
mechanisms. We use the ORBAcus* ORB from Object Oriented Concepts in WebFlow and
have purchased a security service extension that uses Kerberos from Adiron Software.

In Gateway, JSP pages act as clients to the WebFlow servers. Both the JSP client and the
WebFlow server are required to have valid credentials. For the JSP pages, this is the TGT
created when a Gateway administrator logged in to the account. The WebFlow parent server,
which runs on the same machine as the Apache and Tomcat servers, must access a keytab
file. The Kerberos implementation of CORBA security requires that all Kerberos services
use a keytab for authentication. For testbed implementations of Gateway, we have used
specially generated keytab files that are owned by the Gateway account and are tied to a
single server machine.

WebFlow servers can potentially be distributed on multiple machines as child servers to the
parent. Wire communication between the servers goes over SECIOP, a secure CORBA
protocol that supports generic security services application programming interface
mechanisms such as Kerberos. SECIOP supports Data Encryption Standard (DES)†
encryption and MD5 hashing. These child servers are required to possess access to a keytab
file and must authenticate themselves to the parent. These servers would also need access to
keytab files. We do not currently make use of this feature with the ARL Gateway server.

Interactions with any remote machines are handled through Kerberized rsh and rcp. For
example, if the queuing system of a remote machine needs to be queried to learn a job status,
a WebFlow module runs the qsub command through rsh as an external call.

* ORBacus is a fully CORBA-compliant ORB that is distributed as source code. ORBAcus is a product of Object

Oriented Concepts, now owned by Iona Software. See <www.ooc.com>.
† DES Encryption originally published in 1977 with the official backing of the U.S. government.

 10

Job submission is handled in the following manner: When a user logs in to the Web server, a
TGT is generated for him on the server. This file is owned by the Gateway account. The
user’s identity (principal name) is maintained as part of his/her session (as described
previously). When the user wishes to submit a script to a particular queuing system, the
server does this as a remote process with the environment variable KRB5CCNAME set to the
appropriate credential. Thus the user’s credential is owned by the Gateway account, but the
job is submitted as the user’s.

Other services may be handled in the same manner. For example, the user’s file system
might be accessed through an rsh command to determine the files in his/her directory. The
user may move files between different remote machines using rcp, with ownership preserved.
Files transferred between the user’s desktop and the server machine are handled in a different
manner, using encrypted HTTP upload and download mechanisms, following proper Web
authentication previously described.

We finally note that WebFlow servers may accomplish these same tasks directly. For
instance, by the same process just described, the master server can create a WebFlow child
process via rsh that will run as the appropriate user. This process could then access the user’s
file system as needed, submit jobs, etc.

6. Gateway GUI Interface

The Gateway Interface consists of several screens that are reviewed here. The basic “look”
and “feel” can be changed or updated at any time. The GUI starts a session with an HTTP
login screen as shown in figure 3.

In the top box, the user inserts his/her user name and the realm that he/she wishes to
authenticate as well (e.g., swilker@arl.hpc.mil). That is followed by a password and then the
authentication ID from the user’s SecureID card. The server authenticates the user and
creates a ticket for the user on the realm that the user has permission to be on.

After some initial screens with the message of the day, the screen shown in figure 4 appears.
This screen consists of a “submit job” button, an “archive” button, and a “portal admin”
button. Along the top of the window, there are buttons for a file browser and a job monitor;
these buttons are also repeated along the left-side frame. The buttons along the top provide
the user with a new independent window. The buttons along the side do the same function
but use the existing frames’ main window. A logout window is also provided to allow the
user to exit the session and kill his/her tickets. The file browser feature provides a connection
between the user’s machine and HPC storage. The user can then transfer files to HPC from

 11

Figure 3. Login screen.

Figure 4. Main screen.

his/her local machine and retrieve files from HPC to his/her local machine. There are plans
to extend this capability, and this will be discussed in the conclusion section. The Job
Monitor feature queries HPC GRD for jobs that are currently submitted. All of the jobs in the
queue are then displayed. The user is additionally allowed to delete a job from the queue or
stop a job.

The job submission module is designed to allow other sites and users the ability to add
software to the access list, write their own scripts, and customize the job submission process.
The current portal includes modules for three different codes. These are ANSYS,
ZNS-FLOW, and Fluent. A snapshot of the screen is shown in figure 5.

 12

Figure 5. Submitting jobs.

For each of the options available, a problem name is supplied, and the script will create a
directory on the user’s HPC home directory with that name and a date as part of the name.
The GRD scripts program input files and output files are all stored there. Then, using the
archive feature, the user can easily return to the same job again after, for instance, he/she
changes the input file. This allows users to correct mistakes and quickly resubmit jobs to
HPC for simulation. A job submission using ANSYS is shown in figure 6 for reference.

In this screen, the user selects the wall time for the run and the complex, although not
currently working, so anything will work here (e.g., SGI, an input file, and an output file).
The script then writes a GRD script and supplies it via an editable text window. This can be
changed by the user or used “as-is” to submit the job.

Figure 7 shows a cut-in-half view of the GRD script in a text window. After you submit the
job, you can check on the job’s progress using the job monitor. Jobs can be stopped and then
resubmitted using the archive feature. The procedures followed here will vary between
different application software packages. However, the functionality remains the same, i.e.,
(1) the user authenticates and gets a Kerberos ticket, (2) files are moved between the user’s
machine and HPC machine using the interface, (3) a series of questions, pertaining to the
running of an application, are answered using some GUI interface, and (4) the user submits
his/her job through the GRD interface using the script provided.

 13

Figure 6. Submitting an ANSYS job.

--

Figure 7. GRD script for ANSYS job.

7. Conclusions

An open-source vanilla Kerberos-enabled Web portal now exists in which a user can transfer
files and submit computer runs to the HPC. The system is open source and can be adapted
for use at any of the HPC sites and elsewhere. The portal will only be viable if users who
need this HPC capability are identified and then the developers work with the users to make
the interface user friendly. The advantage to having this relationship is obvious. For starters,
the client buys into the system, but more importantly is the fact that the developers don’t
usually know the user’s needs or wants. The user knows his code and knows what will help

 14

him do his/her work more efficiently. At the same time, the developers have knowledge of
the HPC architecture and can smooth over the coding difficulties to provide HPC with an
interface that everyone is happy with. The marriage between the two sciences is a good one.

Future efforts will include a Kerberos VNC and a more robust version of the FTP. The VNC
will allow users to access an HPC or science visualization computer, as if he/she were setting
in front of it. The implementation of this feature will avoid the need for users to physically
walk to other sites to complete their work. Another big advantage is that files can be left on
one machine and accessed without time-consuming file transfers. Additionally, the user gets
the advantage of using a powerful machine with lots of high-end graphic capabilities without
the burden of purchasing expensive hardware and software. The file transfer feature will also
be enhanced. Currently, file transfers can be done within the Unix environment on HPC.
However, this is a command line driven procedure. With this interface, the user will be able
to drag and drop whole directory structures using Java-signed Applets from one system to the
next, thus greatly simplifying the process of pre- and post-processing. The Web interface
will include this feature. Additionally, there will be a Java stand-alone program that will also
provide the same functionality using a local machine’s HPC Kerberos tickets. The advantage
of the stand-alone program is in its use of the local Kerberos authentication. The
disadvantage is that the users will need to have the current version of Java JDK library
installed on the local machine to make the program function properly.

 15

8. References

1. Flanagan, D. Java in a Nutshell; O’Reilly Press: California, 2002.

2. Fields, D. K.; Kolb, M. A. Java Server Pages; Manning Press: Connecticut, 2000;
Java is an open-source programming language provided by SUN Microsystems. See
<http://www.sun.com>.

3. Monson-Hafel, R. Enterprise Java Beans; O’Reilly Press: California, 2001.

4. Tremblett, P. Instant Java Server Pages; McGraw-Hill Press: New York, 2000.

5. Adiron LLC implements the CORBA security service in Kerberos: <www.adiron.com>.

6. Marlon, P. Gateway Security Model; White Paper ASC-MSRC; University of Indiana,
IN, 2002.

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 16

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 Only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FT BELVOIR VA 22060-6218

 1 COMMANDING GENERAL
 US ARMY MATERIEL CMD
 AMCRDA TF
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 US MILITARY ACADEMY
 MATH SCI CTR EXCELLENCE
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL D
 DR D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS R
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

